
Jeff De Luca on

Feature Driven Development

Interview

April 2007

it-agile consultant Stefan Roock
1
 interviewed Jeff De

Luca, who founded Feature Driven Development

(FDD) 10 years ago. Jeff talks about the roots of FDD,

the character of agile methods and the relationship of

FDD to eXtreme Programming (XP) and Scrum.

Jeff argues about agile dogma: “I am not religious

about FDD as the one and only one true process, nor

am I religious about process and method. What I am

religious about is frequent, tangible working results, or

reliably delivering working software in a timely

manner.”

When coming to the question what method is suitable

for what type of project Jeff points out: “I’m saying that

the Agile methods are more suited to types of people

and organisational cultures than types of project.”

Jeff underlines the importance of a upfront high-level

modeling activity: “…there has to be some

informational / analytical activity at the start to give us

the knowledge to set a baseline that we can track and

report against… FDD is the only agile method that

gets this part right.”

In contrast with XP, FDD has class ownership. Jeff

has a strong opinion about class ownership:

“Collective ownership is code for ‘no ownership’. It's

not a structure I believe in.”

1
 stefan.roock@akquinet.de

Interview Intro

Stefan: Hello Jeff

Jeff: Hello Stefan.

Stefan: How are you?

Jeff: I am fine thanks.

FDD Roots

Stefan: OK, let's start with the interview. What are the

roots of FDD? When did FDD start?

Jeff: Well, that's a very interesting question actually.

FDD started in name in 1997-1998 on a project I was

running for a bank in Singapore. I had hired Peter

Coad to lead the overall modelling for that project and

that is how we both met.

Most of what I was doing I had already been doing for

years and some of those influences date back to my

time working in IBM programming laboratories in the

USA. But Peter Coad had the notion of a very fine

grained feature and that was an important concept. It

was finer grained than the tracking I was using before

that.

So I would say FDD's roots are things like the

experiences I got in the IBM programming labs and

then the notion of a fine grained feature from Coad in

1997. FDD was first written about and given a name in

1998.

Stefan: How did you recognize that FDD is worth an

own name and method description?

Jeff: It was in the middle of that project, after I had a

lunch meeting with John Gage the Chief Scientist at

Sun Microsystems, that I went to back to Peter and

agreed to write about the approach being used. Peter

 Jeff De Luca on Feature Driven Development

Interview

had asked me previously to write about the approach I

used.

When I had lunch with John Gage, he talked about

how he was also involved in Government think tanks

and things like that. In fact, he was in the Asia region

for the APEC meeting of governments (asia pacific

economic forum). Anyway, he was talking about a

particular think tank or some such thing he was

involved in, and they were in a very large room, and

the walls were on wheels and moveable, and each

team did their work on these walls and then they did

their presentation by moving their wall to the centre of

the auditorium.

Stefan: That sounds familiar for people with an agile

attitude.

Jeff: So then I started explaining to him how we did

our modelling and requirements analysis with users by

working in teams on walls, using coloured post-it notes

on pieces of flipchart paper, each team bringing their

piece of flipchart paper to the centre of the room to

present their model, and so on. Plus I tracked and

planned projects by using charts and reports on a wall

(wall planning). Anyway, John got very excited and

was challenging me. He said "who is your project

anthropologist? who is writing this stuff down?" and so

that is what got me to go back to Coad and agree to

write about how I run software development projects.

Agile vs. Non-Agile

Stefan: FDD is known as a member of the community

of agile methods. What are the main differences

between FDD and other agile methods like XP or

Scrum?

Jeff: There's a lot of differences at the detail level

between the Agile methods, but I don't think it's the

differences that are interesting. What's really

interesting is what binds all the Agile methods together

- and that is a common value system. This is captured

by the four Agile value statements. i.e. we value

working code more than... those statements. That is

the common value system the various methods share.

And it is a very good one. It takes great maturity to

"get it".

Stefan: But we have a long way to go to until Agile

became an accepted software development approach.

Jeff: A few years ago a common session at the major

conferences, usually by some industry analyst, was

about the differences between traditional or

heavyweight methods and Agile methods. And these

sessions would always have a slide title something like

"Perceived problems with Agile" and it would say

something like "Needs a customer to interact with" and

"Needs good people". Um, yeah, no kidding I say! This

is right. They are real problems with Agile because

they are real problems with all software development. I

mean, what the analyst is saying in effect is that if

using a heavyweight method then I don't need to talk

to a customer and I don't need good people? I think

we know how successful such a project would be.

So this is nonsense. These are problems with all

software development and what Agile does that is

different to the traditional methods is that Agile makes

such problems first class issues. Agile puts them front

and centre. This is what the four value statements are

doing.

FDD Modelling

Stefan: One of the striking differences between FDD

and Scrum/XP is the explicit modeling process in the

beginning. Some may say that's big design upfront

(BDUF)? Is it?

 Jeff De Luca on Feature Driven Development

Interview

Jeff: No, not at all. BDUF has become a pejorative

phrase and with some it seems that any activity before

coding is labelled BDUF. This is not helpful. If you are

a project manager one of your pain points is having to

answer these two questions: "How far along are you?"

and "How far is there left to go?" These questions are

hard to answer. They are even harder to answer with

accuracy, and even harder again to be accurate and

meaningful to the client. The Develop an Overall

Model process is not a heavy and detailed modeling

activity. We build what is called a shape model. That

is, we want to identify all the classes in the domain

and their connections, but not try and identify every

single attribute and method in every single class. This

is done in a highly collaborative way together by the

developers and the users (domain experts as they are

called in FDD). You could think of this as perhaps

high-level design, but it also is really requirements

analysis and requirements discovery itself. While we

produce a shape model in this activity, the real secret

to it is the incredible knowledge transfer that takes

place. Models are very expressive, they are visually

explicit - there is very little wiggle room in a model, and

capturing our understanding of the domain (via talking

to the users) in this way gives us great information and

knowledge.

So, really, this first process in FDD - Develop an

Overall Model - is an informational / analytical activity

to give us the knowledge to Build a Feature List and

then plan the project with good accuracy and

coverage. Once these startup-phase processes are

complete, FDD's iterations or increments through the

construction phase are more fine-grained than your

typical iterative/incremental method. So, how long is

this so-called up-front activity in FDD? We would

model with the users for about 2 weeks for every 6

months of construction time in a project. Jim Highsmith

summed this up well in one of his books: Thus, for a 6-

month project, Jeff De Luca will be coding in week 3

and Ron Jeffries (XP) will be coding in week 1; hardly

a significant difference.

Finally, and this is a very important point: When we

moved from waterfall to iterative/incremental that was

a big improvement. Iterative/incremental methods are

some number of slices through most of the waterfall

phases. But if we are too pure in our

iterative/incremental approach - that is we are also

slicing through requirements and analysis - then of

course it is hard for us to answer the questions "How

far along are you?" and “How far is there left to go?"

because we haven't even looked across the rest of the

requirements yet. So, there has to be some

informational/analytical activity at the start to give us

the knowledge to set a baseline that we can track and

report against so that we can answer those questions.

FDD is the only agile method that gets this part right.

Not "all of the design up front" as the pejorative use of

BDUF has come to mean - but "just enough design"

and note that this first activity in FDD is as much about

requirements and requirements analysis as it is about

high-level design.

Stefan: You say that one major effect of the Develop

an Overall Model process is understanding the domain

and requirements. That seems very similar to the

activity Eric Evans calls knowledge crunching in

Domain Driven Design.

Jeff: If it is achieving the same outcome, then it is a

good idea. When I teach people how to abstract and

adapt FDD - this first FDD process is one of the places

where you could substitute a different approach.

Modeling the domain in the way FDD describes it is

the best way I know how to do this. But if some other

approach can satisfy the goal of an

informational/analytical activity to give us enough

knowledge to set a baseline with good coverage and

good accuracy - then that is more than fine by me.

 Jeff De Luca on Feature Driven Development

Interview

FDD Chief Architects and Project

Managers

Stefan: As you described the Develop an Overall

Model process is a common task of various project

participants. One of the FDD roles is the Chief

Architect. Has he a special role in this first process?

Jeff: Ah, the Chief Architect as a role is overplayed. I

am long overdue to refine the FDD processes and this

is one place that will change. The correct role name is

Chief Modeler and that's what I'm using these days.

The important roles and aspects are this: we bring

together domain experts (users, business analysts,

subject matter experts - these are all synonyms; a

domain expert is simply someone that has expertise in

part or all of the domain - the business) and

developers under the leadership of facilitator and an

experienced modeler. So Chief Modeler (or Chief

Architect in the current process description) is simply

referring to that experienced modeler that can lead the

group as necessary, produce a strawman model to

facilitate progress, etc. These are all just role names.

Roles are like hats you can wear and you can wear

multiple hats. As an example, if a person is really good

they could play both the facilitator and Chief Modeler

role - Peter Coad is an excellent example of such a

person.

Stefan: Ah, that's an important statement since it

differs from what many people may associate

intuitively with the term Chief Architect.

Jeff: You are right. It's a problem name - anything with

"architect" or "architecture" in it is a problem name in

I.T. since those terms are so heavily overloaded.

Stefan: Is there a similar issue with the Project

Manager role? Traditionally the Project Manager is

responsible for defining tasks and assigning them to

developers.

Jeff: Project Manager is different and the tasks you

mentioned are handled differently in FDD. In terms of

the FDD processes themselves, Project Manager

barely rates a mention - only in 3 or 4 places - and

usually as the role that "forms the team" to do the next

set of tasks or activities. So, the work tasks in an FDD

project - Features - are not defined by the Project

Manager. The high-level planning is done

collaboratively with the Project Manager and the

developers. The assignment of features for design and

build is done collaboratively by the Project Manager

and developers. The actual detailed scheduling and

planning of batches of features for design and build is

done by the developers.

FDD Features

Stefan: Well. The Develop an Overall Model process

precedes the Build Feature List process. One might

argue that the order is wrong. Don't you need to know

the concrete requirements / features to build the

overall model?

Jeff: No - not as these things are defined by FDD. An

FDD feature is a tiny, granular piece of client-valued

function. They are very small and when building the

features list you want the features as fine-grained as

possible (as this gives you the most flexibility in the

detailed sequencing of features during the

construction phase and it also gives the most flexibility

in allowing work to complete where one tiny part of

work is still blocked). To be able to decompose the

domain into a list of fine-grained features with good

coverage and good accuracy, you must have an

 Jeff De Luca on Feature Driven Development

Interview

informational/analytical activity before it to give you

such knowledge. For example, the Singapore Lending

project (an FDD case study) had over 1000 features

just in the PD layer (business logic layer of the app).

When you understand now what an FDD feature is - of

course it is quite impossible to be able to build a

features list as the first activity.

The other part of your question was about what do you

need to know to develop the overall model. Well, what

we are doing is modeling the domain; that subset of

the domain bounded by the scope of this project or

application. So the minimum entry criteria to develop

the overall model is that we must at least have some

idea of what that scope bounding box is. Without that

there is nothing to facilitate against and you can end

up modeling the whole world. In project terms - its

hard to hit a target if you don't know what the target is.

This is how the target is made clear in FDD. In I.T. we

are particularly poor at this; we make too many

assumptions, we don't clearly define the target.

Class Ownership

Stefan: When it comes to feature construction there is

a obvious difference concerning class ownership. XP

and others propose collective ownership. FDD has

class ownership. What is the reason? How strict is the

class ownership handled in typical FDD projects?

Jeff: The concept of module or component ownership

has long been practised and long been known to be a

best practice. That's how all professional development

at scale is done. Everyone can't know everything

about everything - that is brittle and it can't scale.

Brooks (The Mythical Man Month) told us so nearly 30

years ago; many others have too. For some reason,

this concept has gone away in some methods and we

need to put it back.

If you think of a sequence diagram for a model: Some

number of classes collaborate to perform a function -

such as calculating the weight of a shipment - in the

product sales domain. There are 4 or 5 classes that

are involved in such a feature. If you don't practice

safe computing; if you don't do class ownership then

when you assign that calcweight feature to a individual

developer, that developer has to touch 4 or 5 classes

in the system. He has to have knowledge of 4 or 5

classes in the system. Now, think of a very high-use

class in some system - such as the LoanApplication

class in a Lending system. Here's a class with

hundreds of methods and attributes - each written by a

different developer at a different date and time.... just

saying this makes the hairs on the back of my neck

stand up!

And what's especially ironic about this is that one of

the fundamental principles of OO is encapsulation;

how a class does what it does is private and internal to

that class and those implementation details can vary

wildly as long as the class presents a consistent

interface to the rest of the world (the other classes).

Well, humans naturally encapsulate. If you practice

class ownership you get much better consistency of

implementation and interface.

Now common sense of course applies here as it

should everywhere. Class ownership is not a life

sentence. If you get the Customer class you're not

stuck on Customer forever. These owners can and do

change throughout a project. At the end of the day, all

we are saying is that a developer owns some number

of classes. You could model that as Developer-----

*Class. Now, if it's a small project, maybe only 4

people or so, we'll "chunk it out." e.g. “Fred - you do

the customer stuff, Paul - you do the account stuff,

Alex - you do the admin stuff, Phil - you do the UI.”

We'll only think about it at that level.

If it is a larger project with a larger or more complex

model then we'll put more thought into it. We'll look at

the classes in the model and we'll think about class

complexities and our developer skills. e.g. there are

 Jeff De Luca on Feature Driven Development

Interview

two kinds of class complexity - pervasive complexity

(which is a class that is touched by a lot of features -

but it doesn't do much itself except to delegate away)

and algorithmic complexity. So in a larger model we'll

put more thought into it. We don't want to assign many

pervasively complex classes and algorithmically

complex classes to the same developer because we'll

end up blocking on that developer during construction.

In both cases - the small and the large - what you end

up with is Developer----*Class. Collective ownership is

code for "no ownership". It's not a structure I believe

in.

Testing and Code Inspection

Stefan: Testing is emphasized by many agile

methods. FDD has code inspections. What is the role

of testing in FDD?

Jeff: Well you have to start by asking these other

methods what the goal of testing is in their method -

and the answer is "to remove defects." Well that goal

gets even more emphasis in FDD - but not solely

through testing because testing is one of the least

effective ways to remove defects. This is not

speculative - it is a very well experimented and

measured thing in I.T. Go read Capers Jones for

example. Inspections are the most effective form of

defect removal (they are also a great team building

activity as they actively propagate team culture as well

as syntactic and semantic standards). So, what does

FDD do about testing? Well what it does is utilise

proven best practices to ship the fewest number of

defects to test in the first place. We have the

collaborative modeling with the users where we are

pushing back hard on requirements and requirements

analysis since models are so visually explicit. Then we

do formal design and code inspections - but on tiny

features - which makes the implementation of these

known best practices so much easier. All of this is so

we have the fewest number of defects possible before

we get to unit testing which is a mandatory step in the

FDD Build by Feature process.

And once you get there we do just as much for testing

as any other currently fashionable testing approach.

We do unit testing, we do testing automation,

coverage, etc. FDD does far more for the goal of

testing in other methods - defect removal.

Management

Stefan: What do managers and users like about FDD?

Jeff: What managers and users love about FDD is it's

tracking and reporting. It's transparency and

communicability. Describing the work to be done in

terms a client-valued features and reporting against a

decomposition of the business itself (the domain)

resonates really strongly with most line of business

development. The features list and the parking lot

chart (one of the reporting visualisations in FDD) have

been very widely received and accepted. Many other

methods are using those things now too. Project

managers want to be able to answer those two

questions (“how far along are you? how far is there left

to go?”) and communicate in a meaningful way to the

client. This is what draws most people to FDD.

FDD and other agile methods

Stefan: It is common practice to mix different agile

approaches in projects, like having the Scrum

Meetings and Pair Programming. Are practices from

Scrum and XP typically present in FDD projects also?

Jeff: Yes they are. Many of the 12 practices in XP are

present of course - they are not new. A daily standup

is something I've used myself for decades. In fact,

daily standups were used during the early part of that

lending project in Singapore (1997). The burn down

chart in Scrum is similar to the Trend chart in FDD

 Jeff De Luca on Feature Driven Development

Interview

(one plots down, the other plots up). At this level there

are many similarities and many differences. FDD

doesn't use timebox management like a Scrum, FDD

doesn't pair program. But the goals of both of those

things are achieved in FDD but in different ways.

Project Types

Stefan: You said collective ownership doesn't scale

well. How large are typical FDD projects? What are

the largest FDD projects you did and you know of?

Jeff: Well that does depend on how "large" is defined.

The Lending project in Singapore was one of the

largest Java projects at the time - that one had about

50 people. The largest developer team I've ever

managed in a project is 250 developers. At the small

scale, I've done many 2 person FDD projects. Most

projects these days should be smaller durations (most

businesses aren't interested in projects that take

longer than a year to develop) and so this will also

scale team sizes down. I'd say most projects of

significance are between 6 and 50 developers. There

are of course significant projects with more than 50

developers, but it's not the majority case. I'm also

talking mainly to commercial and corporate line of

business development.

And I did say collective ownership doesn't scale well -

and that is true, but I also believe it just doesn't work

as well as other approaches. It's not just about scale.

Stefan: Would you say, that FDD is more suitable for

certain project types than for others?

Jeff: No I don't think the Agile methods classify that

way. By project type I mean. When it comes to this

sort of thing I tell people to get Jim Highsmith's Agile

Software Development Ecosystems book. That's the

only book that talks about all the Agile methods, in

some detail, in the one book. You read that book, and

one or two of the methods are going to resonate with

you and your team. And whichever methods those are,

they are the ones you should explore.

In other words I’m saying that the Agile methods are

more suited to types of people and organisational

cultures than types of project.

The FDD Future

Stefan: Are their any special enhancements of FDD

you are working on currently?

Jeff: Not enhancements to FDD as such, just

describing and explaining more of it and also the

relationship of such approaches to other parts of I.T.

such as program management, governance, etc.

The End

Stefan: Jeff, thank you very much for the interview. I

look forward to meet you in Hamburg.

References

• http://www.nebulon.com/articles/fdd/downloa

d/fddprocessesA4.pdf

• http://www.featuredrivendevelopment.com

• FDD training in Germany::

http://fdd.it-agile.de

• Web site of Jeff De Luca:

http://www.nebulon.com

 Jeff De Luca on Feature Driven Development

Interview

Kontakt: akquinet AG � Paul-Stritter-Weg 5 � 22297 Hamburg
 Fon +49 (0)40 881 73 – 300 � agile@akquinet.de � www.akquinet.de

FDD trainings in Germany

It-agile offers FDD trainings in Germany.

In 2007 the father of FDD Jeff De Luca leads two FDD

trainings and certifications in Germany:

• 8th and 9th of May 2007 in Hamburg

• 21st and 22nd of November 2007 in

Karlsruhe

More information and registration at:

http://fdd.it-agile.de

or via e-mail:

info@it-agile.de

